
Sufficient encounter condition in a differential game 753 

Theorem 3.1. When Condition 1.1 is fulfilled, the first player’s position strategy 

u exists, which guarantees the estimate 

min, p ({x [tl},, M) /< a 

t, < t 4 6, a = max (0, E (to, +J} 

for any motion x [tl = x [t; t,, x0, U] . 
The author thanks N. N. Krasovskii for formulating the problem and for constant atten- 

tion to the work. 
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ACCUMULATION 

We pose the problem of error accumulation in linear systems on a finite time 
interval under three constraints ofthe perturbation function and its lower derivatives. 

We have shown that the largest error in the system is realized in the class of 

piecewise-quadratic functions possessing certain limit properties on the set of 
switching points of the system’s impulse transient response and of the maximizing 
external influence. Schemes are obtained for the effective solution of the prob- 
lem, based on a combination of Bellman’s optimality principle and of analytic 
information on the extremal properties of the external influences. The present 
paper is a development of [ 1 - 31. 

2. Statement of the problem, Let the error in the kth system coordinate 
Xk (k = 1, . . ., i), caused by a perturbing action f (I), be the solution of the differ- 

ential equation 
2 = ?il Ai (t} % + f (t) (1.1) 

i=O 

in which the coefficients A i (t) (i = 0, . . . , n - 1) are continuous functions of 
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time t on the interval IO, $!‘,I and I (t) belongs to a set 

the following constraints : 
If (Gf < IfzO! If’ (0 I < ml 

M of functions satisfying 

(1.2) 

if’ (0 - f’ is)l < m It - sl 

The solution of Eq. (1.X) can be written as 
T 

Sk (I, T) = 1 k(T, t) f @I & 2' EZ J - (0, T,,] u* 31 

Here IL (T, t) is the system’0s impulse transient response relative to perturbation f (t). 
The problem is to seek the quantity 

When T = T, problem (1.2) - (1.4) degenerates to the know problem of error accu- 
mulation at a fixed instant T,,, considered in [4 - S] with one constraint on f (Q, in [9] 

with two constraints (on the function and on the first derivative), and in [I - 31 under 
three constraints, respectively. In linear systems with constant parameters with one con- 

straint on f (tf (if (t)l < m,) the maximum error in the interval [O, Taf is realized 
at the extreme point T,. In the remaining cases this 

! - 

i!YL 
-ill E 

maximum can be reached at an intermediate point of 

g, _c,+_ *L z 

u 

“2 the interval IO, 7-J. --. 

j J:rl 32 2. Btror accumulrtion at B fixed instant 

! 
I 

T l We consider an auxiliary problem on the limit 

*jr, 
values of the functional 

i 
I 

j-; c “i ,_+-- 

i.y ” / 

.“-J J, i (F; q) = f F (5) dx (a 4 23 G 521 (2.1) 

* 1 

x1 

1.1 ‘r 
j \__ __.._JC 

1 

in the class X of functions F(Z) subject to the follow- 
ing requirements : 

.i 
1 i 

! ,/ 

,--__._.--\‘\J .‘.% 

%‘, i.,' ! 

j F(x)\ -< ml, 1 F(x) - F(s)/ < 77ts lx - 4; 

The function 0, (x) has the form (Fig.?.) 
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I 
bl- sign (bl) m2 (x - ~1) (Xl < z < z(l)) 

1 

a(x) = max {@I (z(l)) - m2 (z - z(l)); - ml; bz - mz (x2 - z)} 

(z(l) < 5 < x2) 

for xi” < x1 + blJmz 

1 
mill (61 $ ~~21 (z - xl); ml; bz - sign (bs) m2 (zz-r’) + m2 (z(l) -x)} 

(31 (x) = 

1 

(Xl 6 z < r(l)) 

1~2 - sign (b2) ~72~ (Q - 2) (z(l) < x -< 52) 

for xl(l) > x2 - 1 b2 1 Jm2 

The function Q,, (z) = @,, (x:; ~1 (2), xi2)) is defined analogously. The following lem- 
ma is valid (the proof was presented in p]). 

Lemma 1. If set R is not empty, then the largest value of functional (2.1) for 

any fixed value of 2 is reached on one and the same piecewise-linear function (D’l (z; 

u(l), ~(1)) E X possessing the property 
Jl) p 

s 
x1 

@I (x, u(l), u'l') dx= my ,i Q (x; xy), dq ax 

An analogous assertion is valid relative to the function <D, (x, uc2), u(s)) E X, on 
which the smallest value of the functional is reached. 

Let L [q, ~21 be a family of functions f (.z) E M, given on the segment fq, .zzJ 
and satisfying the conditions 

f (Xi) = ai, f’ (ri) _= bi (i = 1,2) (2.3) 

The set of derivatives of f (.z) E L belongs to R for certain values C = n2 - a,, 
C, = -m, - a, and C, = m,. - a,. If L is nonempty, then by virtue of Lemma 

1, applied to the derivatives of f (x) E L, we can find functions f,, (z) E L and 
frr (x) E L realizing the relations 

for any 5 E (x1, x2) . The functions f5 (x) and fH (5) are called the upper and the 
lower function of set L ,respectively. 

Further, let L, [x1, x21 and L, (x,, x21 be families of functions f (x) E M satis- 
fying the first condition in (2.3) for one and the same values ai and the second condi- 

tion in (2.3) for the values bi = bi’ for f (x) E L, and bi = bi” for f (z) E L,. 
According to Lemma 1, each of the sets L, [Al, z2J (j :-_= 1, 2), if it is not empty, con- 

tains its own upper fbj (I) and lower fHj (z) functions. 

Lemma 2. Let (a) each of the sets Lj [x1, x2J (j = 1, 2) be nonempty: (b) the 
derivatives f’ (xi) (i = 1, 2) of the functions f (r) E I;, and f (x) E L2 satisfy 
the conditions : b, > b”l and b,’ < b,. Then for any z E [x,, x,1 we have 

fbl (x) > fb2 (47 fHl (4 < frr2 (4 (2.4) 

Proof. By the definition of an upper function the derivative fbj’ (x) (i = 1, 2) is 
the piecewise-linear function a1 (z; uj; vj). 

1’. Let u1 < vl. According to Lemma 1, when uI < ~1 the upper function fb, (z) = 

mo (ul < z -< ul). But then, by the lemma’s hypotheses, 
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*1 < u, < ga d PI 

f**’ (4 = >, fblZ (4 (51 < x < Vl, vi: 4 :r d j/z> (0.5) 

Ib*l (zj = Gb,’ (xj (a \$ z ,< un, j/z 4 R: cr II.2) 

Here yi (ys) is a boundary of the segment (yl, ul) (respectively, (vi, yz)) on which 

fb," tx) = --m,. By virtue of (2.5) the first relation in (2.4) is automatically fulfilled on 
the segments 1x2, y,J and [vz, zzJ. 

Passing to the segment [vi, tleJt we assume that the function fb, (x0) < fa, (x~) at some 

point zn (vt < %a < yj) . But then there is the inevitable contradiction 

fZ12 il) Q-G Izt, 221 (24 

since 
1(1 
. 711 

It)* full = f& (“hi + 
\ I~*‘~“1 r&r > fb, WJ + 5 fb,l(X) dz = mo 

“a xa 
In exactly the same way the nonfulfillment of condition (2.4) at any point of the segm 

ment [vl, yzJ implies the analogous inequality : f,:,, (r2) > mo. 
2”. Let UL = vi.Then also u2 = up, since otherwise by virtue of inequality (2.6) when 

U, < ZQ or by virtue of the relation 

(2.7) 
T’* C% 

when u, 2 ul, there is the inevitable contradiction: fr, (zj G& &, 

So long as uj = zlj (i = 1, Z), this case differs from the general case considered in 1” 

only in the existence of a subsegment (131 i’, ys’) of segment (Q, Q), on which fbz” (2) = 

--tag and either f,,,’ (xf > f,,’ (z) or j,,,’ (2) : ; ,f!,, (z). In the first case (fn,’ (x) & 

j&’ (2) (?&I ;-, x :+i y?‘)) the first relation in (2.4) is fulfilled automatically on the seg- 
ment [yl’, ys’] . In the second case we arrive at (2.7) by admitting the existence of a 

point xe (y*’ < Xc < ?f2’jr where li,, (x,;j < I,,, (xc). 
The proof is analogous for the lower functions.The lemma is proved. 
Passing to the basic problem, we examine a theorem on the largest value of functional 

(1.3) on set .M for a fixed II’. 
Theorem 1. For a fixed T relation (1.4) is achieved on a set E of piecewise- 

quadratic functions f. (t) (E .W possessing the following properties: 
a) the functions f. (l) have one and the same second derivative ; 
b) each of the functions f. (t) is an upper (respectively, a lower) function of 

some set L it,, is+r I in each interval ft,, Ls,+_,J (s = 0, 1, . . .: ii. - l), where 

1; (T, t) > 0 (i< (i‘, f)< 0) * 
Proof. 1’. Set A! is relatively compact by virtue of the equicontinuity and uni- 

form boundedness of the functions f (f) e M (see (X.2)). Furthermore, &I is closed 
(by virtue of the nonstrict inequalities (1.2)). Consequently? the largest value of func- 
tional I (i) is reached on some function f,, ;-I1 di. Let us assume, to the contrary, 
that in some interval (f,, f,;,f the maximizing function is not an upper function when 
1~ fT, t) :> () (not a lower function when ii (7’, tj < 0) of the set 

L,, = {I : i’ tE M; f (f&j = /r, (fJ) f’ (t&j == rrn (&) is = Tr 7. + 1)) 

Then, after replacing f, f t> in the interval [t,, tf,+z] by the upper function when 
ji (T, r) > 0 (by the lower function when ,Q (r, ;> < 0) of L, , the value of the 
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functional is increased. 
1’. To prove the uniqueness of the second derivative fmn (t) t we make use of the 

condition, following from (1. Z), that set ,%f is convex, In this case the function 

fh (9 = kji (9 5 (1 - h)fz (G 

will belong to M for any h (0 < h < 1) provided ji (t) and fe (t) belong to ;?“. At 
the same time, if fl (t) and j2 (t) are maximizing functions, then, obviously, jn(t) (O,< 
?b < 1) also is a maximizing function. According to (2.2) the second derivative of the 

maximizing function jo(t can take only the values m2, -mZ and 0. The second 

derivative jh” (t) satisfies this requirernent in the single case when ji” (t) ES f< (t). 

In fact,having differentiated fh (t} twice with respect to t and assuming j”r (t) + 
fz” (t), after the substitution of the possible values of j,” (t) and f2-” (t), equal to 7122, 

- m2 or 0, we arrive at the contradiction fhH (t) = + hmz for 0 < h < 1. The theo- 

rem is proved. 

3. Error accumulation on a finite time in_tsrvrl, Let k(T,t) =X(t), 
t,s (s = 1. . . .) n - 1) be switching points of kernel k (2); to = 0, t, =: T; 
ji (1) > 0 (ts < t \c &+I, s = 0, 2, ..*). 

Theorem 2. Relation (1.4) is achieved on the product of ser E and of a set _4 
consisting of the switching points of the kernel x (t) of the functional, of the point T, 
and of the switching points 8, of the function j. (i) E E, belonging to those intervals 

]L &+J (& < 0, < &+,) of sign-constant of the kernel, on which the conditions 

(---1)’ jo (t.J > 0, (--I)” jo’ (G < 0 (3.1) 
are fulfilled. 

Proof. I”. Functional 1 (j, r) is given on the set product ikf X I. The sets n/f 
and J are compact in the corresponding metric spaces Cfu,Tl and R,. Consequently, 
their product is compact,and relation (1.4) is achieved at some point T of the inter- 

val [t, , trtl,J. of sign-constancy of the kernel by some function f, (t) E U. Here 

(s = f, r + 1) 
u -i (f : f E 34; j (tJ = a,, f’ ft,) .= 6,). 

Relation (1.4) can be written as 

According to Theorem 1 and to (3.2), the first functional in (3.3) reaches its largest 
value on a piecewlse-quadratic function j* E E ;T u. The maximum over j of the 
second functional is realized, independently of the value T ft, < 1’ < t,.+,) , by a func- 

tion f ** (t) E E r] U, whose derivative has the form 

1 tnin {b,+mz (t-t,); ml; m,2 (t;+l - t)) (tl. < t < fr+l) 
-&f** (4 = 1 o (3.4) 

(t > L) 
Here we have chosen t;+r from the condition j** (t;+,) = rrz, and considered the 
case when c (t) > 0 (t, < t < trilf. In fact, according to Lemma 1, f** (t) is the 
upper function of the set U ftr, t,,,]. Conseq~~ntly~ the maximum of functional 1 (f, 
2‘) over f for any T is realized by some function f. (t) e E il u, equal to j* (t) 
in the interval [O, t,] and to j** (t) in [t,, f,,,J. 
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2”. The second integral in (3.3) can reach a maximum value at an intermediate 
point 8, of interval [r,, tr+lJ if 6, is the point at which the function f** (t) changes 
sign from positive to negative, because then f* * (t) > 0 (&. < t ,< 6,). This can 

happen when conditions (3.1) are fulfilled. In the remaining cases the maximizing func- 
tion either is sign-constant or can have a single point inside interval [t,, &.+,I at which 

it changes from negative to positive, and relation (1.4) is achieved at one of the extreme 
points of the interval [ t,, fr,, 1. 

The proof for the case x (t) < 0 (t, 6 t < t,+J is carried out analogously. The 
theorem is proved. 

According to Theorem 1 problem (1.2) - (1.4) can be replaced by the finite-dimen- 
sional problem of maximizing the function 

J (f) = s’ E (t) fo (C a07 . . . , a,; bo, . * . , bn) dt 
0 

of 2 (n + 1) variables: f. (tJ = a, and fo’ (ts) == 6, (s = 0, 1, . . . , ri). If the 

number of intervals of sign-constancy of the impulse transient response z (t) is small, 
the maximum errors can be found by the usual methods of differential calculus. Bell- 

man’s dynamic programing method proves to be the most effective method in the gene- 

ral case. 

We consider the functional t 
I( 

I, (ah., bk) = max 
s 

k (T, t) f. (t; a,; . . . , alc_l, b,, . . . , bh-_l; ak, b/J dt 
OO,..., ak-1 o 
h,..., bk-1 

given on a set of functions f,, E il+’ for which the value at point t, and the value of 

the derivative at point t, are fixed: f. (tk) = a,, f,,’ (t,J = bk. Bellman’s functional 
equation has the form 

[ 

‘k+l 

[k+l (ak+l? bk+l) = n’ax 

‘kyb k 

1,: (,a’k, bk) + 1 E (T, t) fo (t; sky bk; Uk+l, b,+l) dt 
3 

t3* 5, 
tk 

Its solution on an electronic digital computer can be effected by the following scheme. 
Stage 1. Determination of all possible combinations of values of uk, b,,, ~k+~, bf,+l 

(k-l, a.., n), satisfying the condition that the corresponding sets L [tk, tk+l]. 
are nonempty. 

Stage 2. The sequential solution of functional Eqs. (3.5) from k : = 1 to k L- n, 
including : 

a) determination of the upper functions, for k = 0, 2, . . . , and of the lower func- 
tions, for h- z 1, 3, . . . , of the corresponding sets L [tk, tk+ll; 

b) computation of functionals Ik (uk, bk) by the usual procedure for solving 

Bellman’s functional difference equations ; 
c) determination of the quantity max I,, (a,, , b,). 

The functional Eqs. (3.5) are two-dimensional, which causes specific computational 
difficulties for an effective solution. By using certain properties of optimal COnttOlS at 

the switching points of the functional’s kernel, we can substantially simplify the com- 

putational scheme. 
We consider the set Nk+i = N,+i (ak*, b$+I, u;+~) of functions f,, E E with the 

fixed values: f,, (tk) = ak*, fo’ (tk+J = bz+:, and f,, (tk+J = ac+i. By virtue of 
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Theorem 1 the quantity 

tic+1 

max 
s t3* 6, 

a~,...~ a&_1 o 
k (T, t) fo (t; a,, . - . , ak-1, bo, . ’ . , bk_1; a; , bk,a;+l, II:++,) dt 

be,..., bk-1 

is achieved by some function fs (t) at some value bk E B b, where Bk is the set of 
values of the derivative fo’ (dk) (f. E Nk+l). Let Bk’ cz BAbe a subset of values of 
the derivative fo’ (fk), for which (-1)” fa” ( tk - 0) = -_mz or 0. The following 
theorem is valid. 

Theorem 3. If set Nk+i is not empty, then a solution exists of functional Eq.(3.5) 

for the values f. (tk) =11 ok*, fo’ (rk+J = b;+, and f. (tk+i) = a&i, realizable by 
some function fo* E N k+l for which the derivative at point tk either belongs to Bk’ 
or is the upper boundary for k = 0, 2, . . . (respectively, the lower boundary, for k = 

1, 3, . ..) of set Bk. 

Proof. Let i (t> > 0 (tk-i < t < tk); the values ak, ak+i and bk+i are cho- 
sen such that Nk+i is not empty : correspondingly, the set Bk is not empty ; further, let 

b* = min b,(b,E B k). Consider the functional equation 

&.+, (b) = max J (akwl, &-I, bg)= max (3.7) 
ak-l, bk-l ek-l,%+i 

ilk-1 (a&-I, b,-l) + 

Gfil 

s z(t) fO@; ak-1, b-1, bk) dtj (f0 = Nkfl) 

tfi-1 

Obviously, 
tk+l 
L 

G+, = max 
s 

k (t) lo (t) dt = max 1;,1 (b) 
no,..., +I 0 bfzBk 

boy... > bk 

Let &+I be the set of functions f. E Nk+r by which the quantity _Z’k+i is achieved 

for all bk E lfk. Arguing to the contrary, assume that I;+r is realized by some func- 

tion for E fik+l satisfying the conditions 

folR (fk) = m2, fm’ (fk) = b’ > b* (3.5) 

According to (2.2) and (3.8) we can form the function fos (t) E Nkflr satisfying 

the following requirements : 

fez (t> = fOl (9 (0 < f < tA+& (3.9) 

foa’ W = b, < b 

fez” (tk) = - m2 or o(b*>b*) 

From (3.9) and Theorem 1 it follows that the function foa (t) eNk+r is a solution of 
functional Eq. (3.7) for some value b = b,. Applying Lemma 2 to the functions 

fol (t) and ~OZ (t) on every interval Itk+, tk] and [tA, tk+r] , the functions differing 
between themselves in the value of the derivative at point tk, we obtain 

fnz (4 > foi (t> (rk-l < t < tk) (3.10) 

fos (0 < foi (Q (tk < t < t&J 

Then, as a result of replacing the function for (t) in (3.7) by fez (t) , the first term 
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on the right-hand side remains unchanged, while, by virtue of (3. 91, the second term 
increases by the amount 

‘kl.1 

s 
‘k-1 

w rfo2 (4 - fo1 (q 1 dt> 0 

which leads to the contradiction 

The proof is analogous for the case 1 ft) < 0 (f~+~ \c 1 < tk) * The theorem is 

proved. 
We can considerably simplify the solution of functional Eqs. (3.5) by using Theorem 

3, because in this case the straightforward sorting through of solutionsforall values of l&k 
and bk is replaced by a sorting through of solutions only for the values 6k E Bk’ and 

for one of the boundary values Dk * the minimum one for odd values of k and the maxa ( 

imum one for even values). 
Ry virtue of Theorem ‘c! an effective solution of problem (1.2) - Cl1 4) can be reduced 

to solving the same functional Eqs.(3,5) as for problem (l.S)- 11.4) when T -= T,, 
with the sole difference that at each stage of solving Eqs. (3.5) (for each value of k) it 

is necessary to determine the quantity 

and to compute the integral 

over functions f”, (t) which satisfy the hypotheses of Theorem 2. The largest error in 
the system in the interval fr>, r,j is determined by comparing the quantities I&*, I&’ 

and 1, (k = 0, 1, . . .) n - 1) found from (3.11) and (3.12). 
Example. The impulse transient response is given in the form 

k (t) = 10.t~~~~'~ sir1 t 

It is known that the perturbation f (t) belongs to some class M with constants: ly10 = 1, 
7r1r - 0.715, mz = 0.35. We are required to determine 

SOlUtiOIl. We solve the functional Eqs.(3.5) successively for the intervals 10, nf 

fm 0) = 1 (0 < t G n) 

max z (2~) : 7.8, 
!fM 

Jml (JT) 7’ 0.4”. j;, (3) == - 0.637 

f,,, (t) = 1 (0 < t < z), />.,,, (ZJC) = -0.23, fml’ (Zjz) = -0.715 

Thus, relation (3.13) is realized by function (3.14) 
@<TC& mX& X {P, f) = % (rr, f,) =,. 8,4 
11. 

(3,141 
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USE OF THE VA~ATIONAL ELATION IN THE STUDY OF FOLA~ZABLE 

AND MAGNETIZABLE CONTINUOUS MEDIA 

PMM Vol.37, NQ5, 1973, pp. 803-812 
A. G. TSYPKIN 

(Moscow) 
(Received May 28, 1973) 

A model of a continuum is constructed, using the variational equation suggested 
in [l, 21 which makes it possible to obtain models of continua using a minimum 

number of unified physical hypotheses. In the present paper the variational equa- 

tion is used to obtain a system of equations defining the macroscopic motion of 
a continuum with polarization and magnetization effects taken into account I 
within the framework of the special relativity theory, Use of the four-dimen- 

sional space-time and special relativity theory is required in order to match 
theories of electromagnetism and mechanics. We investigate some of the con- 
sequences of two possible decompositions of the total energy-momentum tensor 
of the electromagnetic field and the continuum into the continuum energy- 
momentum tensor and the electromagnetic field ener~-momentum tensor accor- 
ding to Minkowski and to Abraham,respectively, When moment stresses and 
external mass moments are absent in the medium, we assume the symmetry of 
the total energy-momentum tensor of electromagnetic field and medium (this 
is equivalent to the absence or constancy of the combined electromagnetic 


